
1

Advanced Graphics

OpenGL

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

2

Today’s technologies

� Java
• Common, re-usable language;

extremely well-designed

• Steadily increasing popularity in
industry

• Weak but evolving 3D support

� C++
• Long-established language

• Long history with OpenGL
• Technically C has the long

history. C++ never really
improved it.

• Long history with DirectX

• Losing popularity in some fields
(finance, web) but still strong in others
(games, medical)

� OpenGL
• Open source with many

implementations

• Extraordinarily well-designed,
old, but still evolving

• Fairly cross-platform

� DirectX/Direct3d
• Less well-designed

• Microsoft™ only
• DX 10 requires Vista!

• But! Dependable updates…

� Java3D
• Poor cross-platform support

(surprisingly!)

• Available by GPL; community-
developed

3

OpenGL

� OpenGL is…

• hardware-independent

• operating system independent

• vendor neutral

� OpenGL is a state-based renderer

• set up the state, then pass in data: data is modified
by existing state

• very different from the OOP model, where data
would carry its own state

4

OpenGL

� OpenGL is platform-independent, but
implementations are platform-specific and often
rely on native libraries
• Great support for Windows, Mac, linux, etc

• Support for mobile devices with OpenGL-ES
• Android, iPhone, Symbian OS

� Accelerates common 3D graphics operations
• Clipping (for primitives)

• Hidden-surface removal (Z-buffering)

• Texturing, alpha blending (transparency)

• NURBS and other advanced primitives (GLUT)

5

OpenGL in Java: JOGL

� JOGL is the Java binding for OpenGL.

• JOGL apps can be deployed as applications or as applets.

• This means that you can embed 3D in a web page.

• (If the user has installed the latest Java, of course.)

• Admittedly, applets are somewhat “1998”.

� Using JOGL:
• Wiki: http://en.wikipedia.org/wiki/Java_OpenGL

• You can download JOGL from http://opengl.j3d.org/ and
http://kenai.com/projects/jogl/

• To deploy an embedded applet, you’ll use Sun’s JNLP wrappers,
which provide signed applets wrapped around native JOGL
binaries.

6

A quick intro to JOGL: Hello Square

public class HelloSquare {

public static void main(String[] args) {

new Thread() {

public void run() {

Frame frame = new Frame("Hello Square");

GLCanvas canvas = new GLCanvas();

// Setup GL canvas

frame.add(canvas);

canvas.addGLEventListener(new Renderer());

// Setup AWT frame

frame.setSize(400, 400);

frame.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

System.exit(0);

}

});

frame.setVisible(true);

// Render loop

while(true) {

canvas.display();

}

}

}.start();

}

}

public class Renderer implements GLEventListener {

public void init(GLAutoDrawable glDrawable) {

final GL gl = glDrawable.getGL();

gl.glClearColor(0.2f, 0.4f, 0.6f, 0.0f);

}

public void display(GLAutoDrawable glDrawable) {

final GL gl = glDrawable.getGL();

gl.glClear(GL.GL_COLOR_BUFFER_BIT);

gl.glLoadIdentity();

gl.glTranslatef(0, 0, -5);

gl.glBegin(GL.GL_QUADS);

gl.glVertex3f(-1, -1, 0);

gl.glVertex3f(1, -1, 0);

gl.glVertex3f(1, 1, 0);

gl.glVertex3f(-1, 1, 0);

gl.glEnd();

}

public void reshape(GLAutoDrawable gLDrawable,
int x, int y, int width, int height) {

final GL gl = gLDrawable.getGL();

final float h = (float)width / (float)height;

gl.glMatrixMode(GL.GL_PROJECTION);

gl.glLoadIdentity();

(new GLU()).gluPerspective(50, h, 1, 1000);

gl.glMatrixMode(GL.GL_MODELVIEW);

}

}

7

1) Shaded square

A simple parametric surface in JOGL

public void vertex(GL gl,
float x, float y, float z) {

gl.glColor3f(

(x+1)/2.0f,

(y+1)/2.0f,

(z+1)/2.0f);

gl.glVertex3f(x, y, z);

}

public void sphere(GL gl,
double u, double v) {

vertex(gl, cos(u)*cos(v),
sin(u)*cos(v),
sin(v));

}

//...

gl.glBegin(GL.GL_QUADS);

for (double u = 0; u <= 2*PI;
u += 0.1) {

for (double v = 0; v <= PI;
v += 0.1) {

sphere(gl, u, v);

sphere(gl, u+0.1, v);

sphere(gl, u+0.1, v+0.1);

sphere(gl, u, v+0.1);

}

}

gl.glEnd();

2) Parametric sphere

8

Animating a parametric surface

� The animation at right

shows the linear

interpolation between

four parametric surface

functions.

• Colors are by XYZ.

• The code is online, and

pretty simple—please

play with it

9

Behind the scenes

� Two players:

• The CPU, your processor and friend

• The GPU (Graphical Processing Unit) or equivalent software

� The CPU passes streams of vertices and of data to the GPU.

• The GPU processes the vertices according to the state that has

been set; here, that state is “every four vertices is one quadrilateral

polygon”.

• The GPU takes in streams of vertices, colors, texture coordinates

and other data; constructs polygons and other primitives; then

draws the primitives to the screen pixel-by-pixel.

• This process is called the rendering pipeline.

10

Anatomy of a rendering pipeline

1) Geometry is defined in local space. The

vertices and coordinates of a surface are

specified relative to a local basis and origin.

This encourages re-use and replication of

geometry; it also saves the tedious math of

storing rotations and other transformations

within the vertices of the shape itself.

This means that changing the position of a highly

complex object requires only changing a 4x4

matrix instead of recalculating all vertex

values.

World space

Viewing space

3D screen space

2D display space

Local space

11

Anatomy of a rendering pipeline

2) The pipeline transforms vertices and surface

normals from local to world space.

A series of matrices are concatenated together to

form the single transformation which is

applied to each vertex. The rendering engine

(e.g., OpenGL) is responsible for associating

the state that transforms each group of

vertices with the actual vertex values

themselves.

World space

Viewing space

3D screen space

2D display space

Local space

12

Anatomy of a rendering pipeline

3) Rotate and translate the geometry from world

space to viewing or camera space.

At this stage, all vertices are positioned relative

to the point of view of the camera. (The

world really does revolve around you!)

For example, a cube at (10,000, 0, 0) viewed

from a camera (9,999, 0, 0) would now have

relative position (1, 0, 0). Rotations would

have similar effect.

This makes operations such as clipping and

hidden-object removal much faster.

Viewing space

World space

3D screen space

2D display space

Local space

13

Anatomy of a rendering pipeline

4) Perspective: Transform the viewing frustrum

into an axis-aligned box with the near clip

plane at z=0 and the far clip plane at z=1.

Coordinates are now in 3D screen space.

This transformation is not affine: angles will

distort and scales change.

Hidden-surface removal can be accelerated here by clipping

objects and primitives against the viewing frustrum.

Depending on implementation this clipping could be

before transformation or after or both.

3D screen space

World space

Viewing space

2D display space

Local space

14

Anatomy of a rendering pipeline

5) Collapse the box to a plane. Rasterize

primitives using Z-axis information for

depth-sorting and hidden-surface-removal.

Clip primitives to the screen.

Scale raster image to the final raster buffer and

rasterize primitives.

2D display space

World space

Viewing space

3D screen space

Local space

15

Recap: sketch of a rendering pipeline

Object definition

Local space

Scene composition

Viewing frame definition

Lighting definition

World space

Backface culling

Viewing frustum culling

HUD definition

Viewing

space

Hidden-surface removal

Scan conversion

Shading

3D screen space

Image

Display space

L2W W2V

V2S

S2D

P’ = S2D • V2S • W2V • L2W • PLP’ = S2D • V2S • W2V • L2W • PL

Each of these transforms can be
represented by a 4x4 matrix.

16

OpenGL’s matrix stacks

� OpenGL uses matrix stacks to store stacks of matrices,
where the topmost matrix is (usually) the product of all
matrices below.
• This allows you to build a local frame of reference—

local space—and apply transforms within that space.

� Remember: matrix multiplication is associative but not
commutative.

• ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

� Pre-multiplying matrices that will be used more
than once is faster than multiplying many
matrices every time you render a primitive.

A

AB

ABC

17

OpenGL’s matrix stacks

� GL has three matrix stacks:
• Modelview – positioning things relative to other things

• Projection – camera transforms

• Texture – texture-mapping transformations

� You choose your current matrix with glMatrixMode(); this
sets the state for all following matrix operations.

� Each time you call glTranslate(), glRotate(), etc.,
these commands modify the current topmost matrix on the
current stack.

� If you want to make local changes that only have limited effect,
you use glPushMatrix() to push a new copy of your
current matrix onto the top of the stack; then you modify it
freely and, when done, call glPopMatrix().

18

Matrix stacks and scene graphs

� Matrix stacks are designed for nested relative

transforms.

glPushMatrix();

glTranslatef(0,0,-5);

glPushMatrix();

glRotatef(45,0,1,0);

renderSquare();

glPopMatrix();

glPushMatrix();

glRotatef(-45,0,1,0);

renderSquare();

glPopMatrix();

glPopMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

Send primitives
from CPU to
hardware

19

Rendering simple primitives

� GL’s state machine applies its state to each vertex
in sequence.

� To render simple primitives, tell GL what kind of
primitive to render:
• glBegin(GL_LINES)

• glBegin(GL_LINE_STRIP)

• glBegin(GL_TRIANGLES)

• glBegin(GL_QUADS)

• glBegin(GL_TRIANGLE_STRIP)

• And several others

� After calling glBegin(), you can call
glVertex() repeatedly, passing in triples (or
quads) of floats (or doubles) which are interpreted
as positions in the context of the current rendering
state.
• GL is very flexible about data sizes and data types

� When you’re done, call glEnd(). Your
primitives will now be rasterized.

glBegin(GL.GL_QUADS);

glVertex3f(-1, -1, 0);

glVertex3f(1, -1, 0);

glVertex3f(1, 1, 0);

glVertex3f(-1, 1, 0);

glEnd();

20

Rendering primitives in a slightly less

painfully inefficient manner

� Instead of sending each vertex individually, send

them en masse:

� Using glDrawArrays() we can avoid the

overhead of a huge number of glVertex() calls.

GLfloat vertices[] = {...}; // Set up triples of floats

glEnableClientState(GL_VERTEX_ARRAY); // We'll be rendering a vertex array

glVertexPointer(3, GL_FLOAT, 0, vertices); // Which vertices we'll be rendering

glDrawArrays(GL_QUADS, 0, numVerts); // Render

glDisableClientState(GL_VERTEX_ARRAY); // Stop rendering vertex arrays

GLfloat vertices[] = {...}; // Set up triples of floats

glEnableClientState(GL_VERTEX_ARRAY); // We'll be rendering a vertex array

glVertexPointer(3, GL_FLOAT, 0, vertices); // Which vertices we'll be rendering

glDrawArrays(GL_QUADS, 0, numVerts); // Render

glDisableClientState(GL_VERTEX_ARRAY); // Stop rendering vertex arrays

21

Rendering primitives in a way that’s really

quite efficient, actually

� glDrawArrays() takes a bulk list of vertices, but it still sends every

vertex to the GPU once for every triangle or quad that uses it.

� If your surface repeats the same vertex more than once, you can use
glDrawElements() instead. glDrawElements() acts like
glDrawArrays() but takes an additional list of indices into the array.

• Now you’ll pass down each vertex exactly once, referencing its integer index
multiple times.

GLfloat vertices[] = {...}; // Set up triples of floats

GLubyte indices[] = {...}; // Set up vertex indices list

glEnableClientState(GL_VERTEX_ARRAY); // We'll be rendering a vertex array

glVertexPointer(3, GL_FLOAT, 0, vertices); // Which vertices we'll be rendering

glDrawElements(GL_QUADS, numVerts, GL_UNSIGNED_BYTE, indices); // Render

glDisableClientState(GL_VERTEX_ARRAY); // Stop rendering vertex arrays

GLfloat vertices[] = {...}; // Set up triples of floats

GLubyte indices[] = {...}; // Set up vertex indices list

glEnableClientState(GL_VERTEX_ARRAY); // We'll be rendering a vertex array

glVertexPointer(3, GL_FLOAT, 0, vertices); // Which vertices we'll be rendering

glDrawElements(GL_QUADS, numVerts, GL_UNSIGNED_BYTE, indices); // Render

glDisableClientState(GL_VERTEX_ARRAY); // Stop rendering vertex arrays

22

Camera control in OpenGL

� OpenGL has two stacks that apply to geometry being rendered: Modelview and
Projection.
• The values atop these two stacks are concatenated to transform each vertex from local to world to

screen space.

• You set up perspective on the Projection stack

• You position your scene in world co-ordinates on the Modelview stack

� You can position your camera on either stack; it’s just another transform
• GL’s utility library, glu, provides several convenient utility methods to set up a perspective view:

• gluLookAt

• gluPerspective

• gluOrtho, etc

� By default your camera sits at the origin, pointing down the negative Z axis, with an up
vector of (0,1,0).

� I usually set my camera position on the Modelview matrix stack

gl.glMatrixMode(GL.GL_MODELVIEW); // Switch to model stack

gl.glLoadIdentity(); // Reset to identity

gl.glTranslated(0.0, 0.0, -cameraDistance); // Slide the model away

gl.glMultMatrixd(cameraTransformMatrix, 0); // Spin the model

gl.glMatrixMode(GL.GL_MODELVIEW); // Switch to model stack

gl.glLoadIdentity(); // Reset to identity

gl.glTranslated(0.0, 0.0, -cameraDistance); // Slide the model away

gl.glMultMatrixd(cameraTransformMatrix, 0); // Spin the model

23

Scene graphs

� A scene graph is a tree of scene
elements where a child’s
transform is relative to its
parent.

� The final transform of the child
is the ordered product of all of
its ancestors in the tree.

� OpenGL’s matrix stack and
depth-first traversal of your
scene graph: two great tastes
that go great together!

MfingerToWorld =

(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…

24

� Great for…

• Collision detection between

scene elements

• Culling before rendering

• Accelerating ray-tracing

Your scene graph and you

� A common optimization
derived from the scene graph is
the propagation of bounding
volumes.
• These take many forms:

bounding spheres, axis-aligned
bounding boxes, oriented
bounding boxes…

� Nested bounding volumes
allow the rapid culling of large
portions of geometry
• Test against the bounding

volume of the top of the scene
graph and then work down.

25

Your scene graph and you

� Many 2D GUIs today favor an event model in which events ‘bubble
up’ from child windows to parents. This is sometimes mirrored in a
scene graph.

• Ex: a child changes size, which changes the size of the parent’s bounding box

• Ex: the user drags a movable control in the scene, triggering an update event

� If you do choose this approach, consider using the model/ view/
controller design pattern. 3D geometry objects are good for
displaying data but they are not the proper place for control logic.

• For example, the class that stores the geometry of the rocket should not be the
same class that stores the logic that moves the rocket.

• Always separate logic from representation.

26

Hierarchical modeling in action

void renderLevel(GL gl, int level, float t) {

gl.glPushMatrix();

gl.glRotatef(t, 0, 1, 0);

renderSphere(gl);

if (level > 0) {

gl.glScalef(0.75f, 0.75f, 0.75f);

gl.glPushMatrix();

gl.glTranslatef(1, -0.75f, 0);

renderLevel(gl, level-1, t);

gl.glPopMatrix();

gl.glPushMatrix();

gl.glTranslatef(-1, -0.75f, 0);

renderLevel(gl, level-1, t);

gl.glPopMatrix();

}

gl.glPopMatrix();

}

27

Hierarchical modeling in action

28

Mobile OpenGL: OpenGL-ES

� GL has been ported, slightly redux, to mobile
platforms:
• Symbian

• Android

• iPhone

• Windows Mobile

� Currently two flavors:
• 1.x for ‘fixed function’ hardware

• 2.x for ‘programmable’ hardware (with shader support)
• Chips with built-in shader support are now available;

effectively GPUs for cell phones

29

Mobile OpenGL: OpenGL-ES

� Key traits of OpenGL-ES:
• Very small memory footprint

• Very low power consumption

• Smooth transitions from software
rendering on low-end devices to
hardware rendering on high-end;
the developer should never have to
worry

• Surprisingly wide-spread industry
adoption

� OpenGL-ES 2.0+ emphasize
shaders over software running on
the phone’s processor. Shaders
move processing from the device
CPU to the peripheral GPU--
mobile parallel processing.

30

Augmented reality with portable 3D

“ARhrrrr”, an ‘augmented reality’ game concept from the Georgia Tech Augmented Reality Lab

Source: http://www.youtube.com/watch?v=cNu4CluFOcw

31

Recommended reading

� The OpenGL Programming Guide

• Some folks also favor The OpenGL Superbible for

code samples and demos

• There’s also an OpenGL-ES reference, same series

� The Graphics Gems series by Glassner et al

• All the maths you’ve already forgotten

� The NeonHelium online OpenGL tutorials

• http://nehe.gamedev.net/

